Repository logo
UNIVERSIDAD NACIONAL
AUTÓNOMA DE CHOTA
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Castro, Wilson Manuel"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Determination of hydration kinetic of pinto beans: A hyperspectral images application.
    (Elsevier, 2024-03) Chuquizuta Trigoso, Tony Steven; Chavez, Segundo G.; Miano, Alberto Claudio; Castro-Giraldez, Marta; Fito, Pedro J.; Arteaga, Hubert; Castro, Wilson Manuel
    Hydration is a typical operation applied to legumes before cooking, reducing time and the associated energy cost. To monitor the process, mass balance method is the most used methodology, despite this method is destructive, repetitive, and time-consuming. For that reason. hyperspectral techniques are presented as an alternative for assessing the hydration process since it is a noninvasive method. Therefore, the objective of this work was to evaluate the technique of hyperspectral imaging for studying the hydration kinetics of pinto beans. For this purpose, a sample of pinto beans was hydrated in distilled water, determining moisture content during the process and taking hyperspectral images by reflectance mode, in the range 400 to 800 nm until constant mass. The moisture content was modelled using Peleg and a sigmoidal model. Next, the images were pre-treated and the median spectral profile for each bean was obtained. Then, a regression model was fitted, using the wavelength that maximized the coefficient of determination (R2) and minimized the root mean square error (RMSE). The results show that Peleg model fit experimental data with R2 in the range of 0.974 to 0.989 while sigmoidal model of 0.997 to 0.999. On other hand, mean spectral profiles at 632 nm and sigmoidal model give the higher metrics 0.997 and 38.3 for R2 and RMSE respectively. The results showed that hyperspectral imaging in reflectance mode is a tool capable of measuring the hydration level of beans with higher performance at 632 nm, with a determination coefficient R2 higher than 0.98.
  • Loading...
    Thumbnail Image
    Item
    Dielectric spectroscopy for the prediction of pork quality during the post-mortem time
    (Elsevier, 2025-08) Chuquizuta Trigoso, Tony Steven; Peralta, Magaly; Medina, Sideli; Arteaga, Hubert; Oblitas, Jimy; Chavez, Segundo G.; Castro, Wilson Manuel; Castro-Giraldez, Marta; Fito, Pedro Juan
    Dielectric spectroscopy was used in this study to predict and classify pork quality during the post-mortem time. Eighty ~1 kg- longissimus dorsi muscles were collected and stored at 4 ± 1 ◦C and pH, instrumental color, and dielectric properties (ε’ and ε’’) were subsequently determined in the microwave range (0.5–9 GHz) at 3, 4, 5, 6, 7, 8, 9, 10 and 24 h post-mortem (hpm), as well as moisture at 8 hpm and drip weight loss at 24 hpm. Of the 80 pork samples, two types of meat were found. RFN (33) and DFD (47) between males and females. Quality parameters: RFN (pH=5.708–5.714; L*=43.341–43.692; moisture (%) = 68.857–69.604; drip loss = 1.655–1.833) and DFD (pH=6.154–6.177; L*=40.152–41.91; moisture (%) = 69.032–69.9; drip loss = 1.129–1.693). Quality parameter predictions during muscle-to-meat transformation showed R² of 0.743 (pH), 0.811 (L*) and 0.603 (C*) for DFD meats with PLSR (full) and R2 of 0.359 (pH), 0.558 (L*) and 0.284 (C*) for RNF meats with PLSR (optimized) from male pigs. R2 cv of 0.412–0.637 for pH, L* and c* for RFN and DFD meats from female pigs with PLSR (optimized). Dielectric spectroscopy predicts pork quality moderately well, but models that are more robust are needed to improve predictions of internal pork quality.
  • Loading...
    Thumbnail Image
    Item
    Impact of Magnetic Biostimulation and Environmental Conditions on the Agronomic Quality and Bioactive Composition of INIA 601 Purple Maize
    (Multidisciplinary Digital Publishing Institute, 2025-06) Chuquizuta Trigoso, Tony Steven; Lobato, Cesar; Zirena Vilca, Franz; Huamán-Castilla, Nils Leander; Castro, Wilson Manuel; Castro-Giraldez, Marta; Fito, Pedro J.; Chavez, Segundo G.; Arteaga, Hubert
    The utilization of magnetic fields in agricultural contexts has been demonstrated to exert a beneficial effect on various aspects of crop development, including germination, growth, and yield. The present study investigates the impact of magnetic biostimulation on seeds of purple maize (Zea mays L.), variety INIA 601, cultivated in Cajamarca, Peru, with a particular focus on their physical characteristics, yield, bioactive compounds, and antioxidant activity. The results demonstrated that seeds treated with pulsed (8 mT at 30 Hz for 30 min) and static (50 mT for 30 min) magnetic fields exhibited significantly longer cobs (16.89 and 16.53 cm, respectively) compared with the untreated control (15.79 cm). Furthermore, the application of these magnetic fields resulted in enhanced antioxidant activity in the bract, although the untreated samples exhibited higher values (110.56 µg/mL) compared with the pulsed (91.82 µg/mL) and static (89.61 µg/mL) treatments. The geographical origin of the samples had a significant effect on the physical development and the amount of total phenols, especially the antioxidant activity in the coronet and bract. Furthermore, a total of fourteen phenols were identified in various parts of the purple maize, with procyanidin B2 found in high concentrations in the bract and crown. Conversely, epicatechin, kaempferol, vanillin, and resveratrol were found in lower concentrations. These findings underscore the phenolic diversity of INIA 601 purple maize and its potential application in the food and pharmaceutical industries, suggesting that magnetic biostimulation could be an effective tool to improve the nutritional and antioxidant properties of crops.
  • Loading...
    Thumbnail Image
    Item
    Non-invasive monitoring of goldenberry freezing using infrared thermography and radiofrequency dielectric spectroscopy.
    (Elsevier, 2025-07) Chuquizuta Trigoso, Tony Steven; Castro, Wilson Manuel; Castro-Giraldez, Marta; Fito, Pedro Juan
    This study presents a non-invasive monitoring system combining infrared thermography and radiofrequency dielectric spectroscopy to characterize the freezing behavior of goldenberry (Physalis peruviana). The system enabled simultaneous acquisition of surface temperature profiles, internal dielectric responses, and emissivity changes during freezing at − 40 ◦C. Thermal imaging revealed distinct freezing stages, including subcooling, ice nucleation, and vitrification, with emissivity decreasing to 0.837 during initial dehydration and increasing to 0.951 near the glass transition (− 35.8 ◦C). Emissivity variations revealed key thermal transitions, while dielectric measurements identified α- and β-dispersions linked to ionic straight and surface tension of ice Ih formation, with relaxation frequencies decreasing progressively as freezing advanced. The integration of both techniques allowed the detection of critical phase transitions, including the onset and completion of ice crystallization, supported by differential scanning calorimetry. These findings provide insight into structural changes and water mobility in high-moisture fruits, enabling real-time assessment of freezing kinetics. The approach demonstrates significant potential for optimizing industrial freezing protocols, improving the preservation of delicate fruits by minimizing structural damage and degradation of bioactive compounds.
  • Loading...
    Thumbnail Image
    Item
    Predicción de atributos de calidad de leche fresca no pasteurizada mediante espectroscopia dieléctrica acoplada a herramientas quimiométricas.
    (Institute of Electrical and Electronics Engineers, 2022-06) Chuquizuta Trigoso, Tony Steven; Colunche, Y.; Rubio, M.; Oblitas, Jimy; Arteaga, Hubert; Castro, Wilson Manuel
    El objetivo de esta investigación es predecir los atributos de calidad de la leche fresca no pasteurizada mediante espectroscopia dieléctrica acoplada a herramientas quimiométricas. Para ello, se trabajó con leche fresca no pasteurizada de la raza Pardo Suizo, obtenida del establo “La Lechera”. Se obtuvieron diluciones de agua y leche fresca del 70 al 100 %.25∘do, seguida de la caracterización fisicoquímica (densidad, sólidos totales, punto de congelación, sólidos grasos, proteínas y agua añadida) y las propiedades dieléctricas en el rango de 0,5 a 9 GHz mediante una sonda coaxial de extremo abierto (N1501A-001), conectada a un Analizador de Redes Vectoriales, modelo N9915A-Keysight Technologies. Asimismo, se empleó la regresión de mínimos cuadrados parciales para correlacionar las propiedades fisicoquímicas con las propiedades dieléctricas. Los resultados obtenidos en la predicción del punto de congelación, las proteínas, los sólidos grasos y el agua añadida de leche fresca no pasteurizada presentaron un coeficiente de determinación y un error cuadrático medio en el rango de [0,95-0,98] y [2]..57 ×10− 7− 7,46 ×10− 2]En consecuencia, se concluye que la técnica de espectroscopia dieléctrica y aprendizaje automático presenta potencial para la predicción de las características fisicoquímicas de la leche fresca no pasteurizada, pudiendo implementarse en las líneas de producción para evaluar de forma rápida y fiable la calidad de la leche de vaca.
UNIVERSIDAD NACIONAL
AUTÓNOMA DE CHOTA
SEDE ACADÉMICA

Jr. 30 de Agosto Nº 560 - Segundo Piso - Plaza de Armas


CORREO ELECTRÓNICO

repositorio@unach.edu.pe
imagen@unas.edu.pe