Repository logo
UNIVERSIDAD NACIONAL
AUTÓNOMA DE CHOTA
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Keswani, Bright"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Spectral Relaxation Methodology for Chemical and Bioconvection Processes for Cross Nanofluid Flowing around an Oblique Cylinder with a Slanted Magnetic Field Effect.
    (Multidisciplinary Digital Publishing Institute, 2022-10) Rasool, Ghulam; Hussain Shah, Syed Zahir; Sajid, Tanveer; Jamshed, Wasim; Cieza Altamirano, Gilder; Keswani, Bright; Sandoval Núñez, Rafaél Artidoro; Sánchez-Chero, Manuel Jesus
    The current investigation explains the chemical reaction and bioconvection process for an inclined magnetized Cross nanofluid over an inclined cylinder using a spectral relaxation approach. Additionally, the facts concerning swimming gyrotactic microorganisms, non-uniform thermal conductivity, and variable decrease or increase in heat sources are taken together. Each profile is checked for inclined and orthogonal magnetic impact. Appropriate transformations made for conversion of nonlinear PDEs into systems of ODEs. For obtaining numerical results, a spectral relaxation approach is utilized, and graphs are plotted with each physical parameter attached. It is well established that the temperature field intensifies owing to an amplification of thermal conduction and Brownian diffusivity phenomena. The heat transfer rate amplifies owing to a magnification in magnetic parameter and thermal conductivity, but the velocity field diminishes as a result of magnification in the Weissenberg number and power law index. Amplification in the reaction rate constant parameter diminishes the concentration field. Activation energy is the key factor responsible for magnification in the concentration field. Furthermore, smooth agreement is found during comparison with the existing literature. Statistical analysis is also conducted for physical quantities.
UNIVERSIDAD NACIONAL
AUTÓNOMA DE CHOTA
SEDE ACADÉMICA

Jr. 30 de Agosto Nº 560 - Segundo Piso - Plaza de Armas


CORREO ELECTRÓNICO

repositorio@unach.edu.pe
imagen@unas.edu.pe